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Integrability Analysis of a Conformal Equation in 
Relativity 
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In 1987 C. C. Dyer, G. C. McVittie, and L. M. Oattes derived the (two) field 
equations for shear-free, spherically symmetric perfect fluid spacetimes which 
admit a conformal symmetry. We use the techniques of the Lie and Painlev6 
analyses of differential equations to find solutions of these equations. The concept 
of a pseudo-partial Painlev6 property is introduced for the first time which could 
assist in finding solutions to equations that do not possess the Painlev6 property. 
The pseudo-partial Painlev6 property throws light on the distinction between the 
classes of solutions found independently by P. Havas and M. Wyman. We find 
a solution for all values of a particular parameter for the first field equation and 
link it to the solution of the second equation. We indicate why we believe that 
the first field equation cannot be solved in general. Both techniques produce 
similar results and demonstrate the close relationship between the Lie and Painlev6 
analyses. We also show that both of the field equations of Dyer et al. may be 
reduced to the same Emden-Fowler equation of index two. 

1. I N T R O D U C T I O N  

If  a system of ordinary differential equations possesses the Painlev~ 
property, it is conjectured that it represents a completely integrable nonchaotic  

dynamica l  system. [See, for example,  Ablowitz  et al. (1980) and Bountis  et 
al. (1982), among others. For a detailed introduction to the Painlev6 test we 

refer the reader to the excellent  review by Ramani  et  al. (1989).] It may 

happen that some systems only possess an incomplete  number  of constants 
that arise at the resonances.  Systems exhibit ing this phenomenon  are said to 
possess the partial Painlev6 property. Such systems can be interpreted as 
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being integrable on a p-dimensional submanifold in the q-dimensional phase 
space, where p is the number of constants found and q the degrees of freedom 
of the system (p < q). We believe that the partial Painlev6 property was 
first demonstrated by Cotsakis and Leach (1994) in their analysis of the 
gravitational field of the Mixmaster Universe. Our intention in this paper is 
to demonstrate that, in addition to the Painlev6 property and the partial 
Painlev6 property, some systems exhibit a further identifiable property which 
we call the pseudo-partial Painlev6 property. This concept will be fully 
described in Section 3. 

In this paper we analyze a nonlinear third-order differential equation 
and a nonlinear second-order differential equation that arise in general relativ- 
ity. These equations arise in the study of spherically symmetric gravitational 
fields that possess a conformal symmetry in the t - r  plane (Dyer et  al. ,  1987). 
The third-order equation possesses the pseudo-partial Painlev6 property and 
we can integrate it once to obtain a second-order nonlinear equation. For a 
particular value of the first integral this equation has the Painlev6 property, 
has two symmetries, and can be reduced to quadratures. It is remarkable 
that an equation that possesses the pseudo-partial Painlev6 property can be 
integrated to one that possesses the Painlev6 property. This demonstrates that 
the pseudo-partial Painlev6 property is important in the solution of differential 
equations that arise in practical applications. The second-order equation is 
analyzed using both the Lie and Painlev6 methods. We show how this gives 
further evidence of the close relationship between these two methods of 
solving differential equations. We finally note that the problem of solving 
the two field equations of Dyer et  al. (1987) is essentially that of solving a 
single Emden-Fowler equation of index two. 

In the next section we introduce the field equations and indicate what 
solutions have already been found. In Section 3 we embark on a Painlev6 
analysis of the third-order equation and one of its first integrals. We show 
that this approach is parallel to that of using the Lie analysis by treating the 
first integral as an Emden-Fowler equation for a particular value of the first 
integral in Section 4. We finally analyze the second-order equation using the 
Lie and Painlev6 analyses. 

2. THE EQUATIONS OF DYER, MCVITTIE, AND OATTES 

Spherically symmetric gravitational fields are important in relativistic 
astrophysics and cosmology (Kramer et  aL, 1980). Such gravitational fields 
with vanishing shear and admitting a conformal Killing vector in the t - r  
plane have been investigated by Dyer et  al. (1987). They generated the third- 
order field equation 
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t , 2 T ~  + p~(2m - 1 )T~ + (m 2 - 2m + 2T)T~ = 0 (2.1) 

where T is related to the gravitational potential, ix = r/t is a self-similarity 
variable, and m is a constant. [For more information on conformal symmetries 
and their relationship to mathematical physics the reader is referred to Cho- 
quet-Bruhat et al. (1977).] Solutions to (2.1) are important because they help 
to generate solutions to the Einstein field equations. Dyer et al. (1987) did 
not present any solutions to (2.1). It was only recently that Maharaj et al. 
(1991) found solutions to (2.1) in the form of Weierstrass elliptic functions, 
Their solution has the form 

y = a2C~e-Z'~(Ct e - ~  + C2, O, - 1 )  

where 

T(p~) = ,yy(x) + To, 

2(m - 2)[3 = 5a, 

[32~/= - 6 ,  

(2.2) 

m ~ - 3 ,  

m = 7 ,  

9 
7' 

19 
m ~ T ~  

T = -24tx4~'(~ 2 + a, 0, b) 

T = -241x-4~(Ix -2 + a, 0, b) 

T _ 
24 

49 
--  - - - -  [~.L4/7~(~,L 2/7 "1"- a, 0, b) + 1] (2.5c) 

24 
- - - -  [~.L--4/7~(~1~ -2/7 "}- a, 0, b) + 1] (2.5d) 

T =  49 

(2.5a) 

(2.5b) 

x = In(Ix)l[3 

k~2 = 6a 2 (2.3) 

= --[(m - 1)2(m -- 3) 2 + 4k] u2 

is the Weierstrass elliptic function, k is the value of a first integral of (2.1), 
and Cl, C2 are arbitrary constants. Note that the assumption implicit in (2.2) 
is that m # 2. For the case m = 2 a solution can be found by simple 
integration. This is given by (Havas, 1992) 

6X2 @ kx + h - , ~k -4 3k2 (2.4) 
Y - _[32.y .y2, 

)k -6  [--[32"Y~ b /  L 
\ 6 ] ]  2"y 

where Havas used the homogeneity property of the Weierstrass function and 
its evenness in x, (2.3), b = (k/~/) 3 + 12s/(132~), and s is a constant. 

It is interesting to note that other well-known solutions of the Einstein 
field equations may be related to (2.1), as was observed by Havas. For 
example, we regain some of the Wyman solutions for particular values of m 
and the first integral of  (2.1). These are given by 
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We have independently verified that the functions (2.5) are solutions of  the 
field equation (2.1). 

3. PAINLEVI~ ANALYSIS 

Using the transformation 

1-~ = e x/(2m-4) ,  T(tx) = 2(m - 2)Zy(x) - � 8 9  2 - 4m + 3) 

we rewrite (2.1) in the autonomous form 

y ' + y " + y y '  = 0  (3.1) 

We proceed with the Painlev6 analysis in the standard manner  (Ablowitz et  

al., 1980). First, setting 

y = eLxp 

where 

~ = X - - X  0 

we find that the pole is of  second order and ~ = - 12. Now setting 

y = _ 12X-2 + f3X r-z 

we obtain the resonances r = - 1 ,  4, and 6. To verify that (3.1) passes the 
Painlev6 test, we substitute the truncated Laurent  expansion 

y = - 1 2 X  - z  + a - i x  -1 + ao + a l x  + a2• z + a3x 3 -t- a 4 x  4 (3.2) 

into (3.1) and solve for the a i ( i  = - - 1  . . . . .  4). This procedure results in 

1 
a - t -  125 

1 
ao = ~'~ 

12 
a I = - -  5 

1 
a2 - 12,500 

1 
a3 = - - 1 8 7 , 5 0 0  

a4 is arbitrary 
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As there are only two arbitrary constants as opposed to the required three 
corresponding to the three degrees of freedom for (3.1), this suggests that 
(3.1) possesses the partial Painlev6 property of Cotsakis and Leach (1994). 
However, if we truncate the expansion at the first resonance, viz. make 
the substitution 

y = - 1 2 X - 2  + . . .  + a 2 X  2 

we obtain, after substitution into (3.1), 

1 
a - 1 -  125 

1 
a 0 ~--- _ _  

25 

12 
a I = - ~ -  

a2 is arbitrary 

The constant at the first resonance is initially arbitrary, but is restricted to a 
particular value when the arbitrary constant at the second resonance is intro- 
duced. We call this property the pseudo-partial Painlevd property. The solution 
to (3.1) is then 

- 1 2  1 1 + 1 + 12 1 ( X - X o )  2 
Y - (x - Xo) ~ + 12----5 (x - Xo) 2--5 -~- (x - Xo) 12,5----~ 

187,500 
- -  (X - -  )CO) 3 + a 4 ( x  - -  Xo) 4 q- ' ' '  

and we say that (3.1) is integrable on a surface in three-dimensional parame- 
ter space. 

Our analysis would normally end at this point. However, we note that 
(3.1) can be easily integrated to obtain the first integral 

y,, + y, + ly2 = K (3.3) 

where K is a constant of integration and thus a parameter. In general, (3.3) 
does not possess the Painlev6 property (or any degree thereof). Reduction 
via the only symmetry (Head, 1993), O/ax, results in an Abel equation of the 
second kind the solution of which, unsurprisingly, is not obvious. However, 
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for K = 18/625, (3.3) does possess the Painlev6 property and has the solution 

- 12 12 1 + 1 + 1 ( X - X o )  1 ( X - X o )  2 
Y = (x - Xo) ~ + 5 (x - Xo-----~ 2--5 125 12,50----O 

1 
- -  (X -- X0) 3 + a 4 ( x  - -  Xo) 4 
187,500 

1 - 7,500,000 + a4(x - x0) 5 + " "  (3.4) 
9,375,000 

To make the solution of (3.3) more transparent, we use the transformation 

This transformation is suggested by the fact that, when K = 181625, (3.3) 
has the two symmetries 

0 
Gl = - -  (3.5a) 

Ox 

G2=eX/5 O +eX/5( - y +~25) OOy (3.5b) 

where we call (3.5b) a 'conditional' symmetry (see also Sarlet et al., 1985). 
We can now rewrite (3.3) as 

Y" + 25Y 2 --- 0 (3.6) 

which has the symmetries 

G~ = 0 (3.7a) 
OX 

G2 = X ~ - 2Y (3.7b) 

Since the transformation is nonsingular, (3.6) still has the Painlev~ property 
and we write its solution as 

6 X _  2 _}_ agX4  _ 25 a2x l  0 -4- ~ a 3 x  16 3125 aax22 + . . .  
Y(X) = - ~  ~ ,,~,,,,, 231,19-----~ 

6 (  b~xlO b3 X16 3b4 •  
--  25 X-2 q- b4X4 -- ~ -t- ~ 16,05~ 

_ 6 ~ ( •  (3.8)  
25 



Analysis of a Conformability Equation in Relativity 631 

where X = X - X0 and ~(•  is the Weierstrass ~ function with c2 = 0 and 
c3 = b4 = (25/6)a4 (Abramowitz and Stegun, 1972). The form of Y(• is not 
surprising, as (3.6) is essentially the defining differential equation for the 
Weierstrass ~ function. Note that (3.8) is the solution to (3.3) [and hence 
(3.1)] for a particular value of the first integral K, but for all values of m, in 
contrast to Wyman's solutions (2.5), which hold only for the particular values 
o f  m.  

4 .  E M D E N - F O W L E R  A P P R O A C H  

We can transform (3.3) into the standard form of the Emden-Fowler 
equation. Setting 

y = 2z(x) + b 

where K = �89 2, we write (3.3) as 

z" + z'  + bz + z 2 = 0  (4.1) 

We remove the z' and z terms in (3.3) using the well-known Kummer-  
Liouville transformation (Kummer, 1887; Liouville, 1837) 

z(x) = u(x)v(t) ,  t = fix) 

where, in our case, 

U(X) = e -(l+a)x/2 

1 e ~ t(x) = -~[ 

= (1 -- 4b) L/2 

Equation (4.1) then becomes 

9 + (Io~lt)-(l+5~/(Z~)v 2 = 0 (4.2) 

For our particular value of K, 18/625, a has the four values +1/5, _+7/5. 
This gives the set of equations 

1 
+ v 2 = 0, a - (4.3a) 

5 

9 + v z = O, oL 5 

~ +  - v 2 = 0 ,  e~ - 5 
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17+ v 2 =  0, ci 5 (4.3d) 

It is easy to eliminate the constant coefficients of v 2 and consider the trans- 
formed system 

17 -1- 122 = 0 (4.4a) 

17 + t -SV 2 = 0 (4.4b) 

17 + t-15/TV 2 = 0 (4.4c) 

17 + t-20/7122 ----- 0 (4.4d) 

with the corresponding symmetries 

0 
GI = -~, 

X l  = t 20__+vt 0 
at Ov 

0 0 
Y1 = 343t 6/7 ~ + ( 147t-1/7v - 12) Ov 

0 0 
Zl = 343t s/7 -=7 + (196tl/7v + 125) 4-  

or 120 

0 0 
G2 = t -  - 2 v -  (4.5a) 

Ot Ov 

0 - 3 v  0 
Xz = - t  0t ~v (4.5b) 

0 
Y2 = 7 t - -  + v -  (4.5c) 

Ot Ov 

Z2 = - 7 t  =- - 6v =-- (4.5d) 
Ot Ov 

Since the Lie bracket of  each pair is 

[ G I ,  G2]  - -  Gl 

we can reduce each equation in (4.4) to quadratures (Olver, 1993) using Gv 
Equation (4.4a) can be reduced to the elliptic integral 

I dv (4.6) 
t - to = [Co - (2v3)[3] 1/2 

or regarded as 

v = ~ ( ( -1 /6 t )  u2 + a, O, b) (4.7) 

where ~ is again the Weierstrass ~ function (Kamke, 1983; Gradshteyn and 
Ryzhik, 1980) and a and b are arbitrary constants. 

We can relate the solutions of  (4.4b) to (4.7) by the mapping 
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25 
t ~ - -  (4.8a) 

t 

5v 
v --) - -  (4.8b) 

t 

of  (4.4c) by 

and of (4.4d) by 

t ~ (49t) 7 (4.9a) 

v ---) vt 3 + 6t (4.9b) 

1 
t -~ -(49t)----- 3 (4. lOa) 

v ~  v + (4.10b) 

Note that Leach et al. (1992) showed that (4.4d) can be reduced to 

f; 7(tol/7 _ t_ln ) = d'q (4.11) 
o [2I - (2"q3)/3] 1;2 

where p was one of the two integral invariants of Zz, i.e., one of 

p = t -4 /7v  - ~ t z/7 (4.12a) 

4 t_3/7 _ 12 t3/7 
q = t4/7v --  7 343 (4.12b) 

and also related (4.4c) to (4.4d) using the mapping 

t___) t-~ (4.13a) 

v 
---) - [4.13b} v 

t 

5. ANALYSIS OF THE SECOND FIELD EQUATION 

Havas (1992) showed that the second field equation of Dyer et al. (1987) 
could be written in the form 

w" - 6x -5"w  z = 0 (5.1) 

Following the idea of Mellin et  al. (1994), we analyze (5.1) by requiring 
that it possess two point symmetries and hence be integrable. 
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Recall that a system of second-order ordinary differential equations 

N(x, ~, ~t, t) = 0 

possesses a symmetry of the form 

O 0 
G = ~(x, t ) ~  + "qi(x, t) dx--~ 

if 

where 

GIZ]NIN=o = 0 

0 0 
~ t , J  = G + ( 4 ;  - ~;~) ~/+ ( q ,  - 2 ~ , ~  - x ;~)  0~ 

is the second extension of  G. (Note that the overdo[ represents total differentia- 
tion with respect to time.) 

We require that (5.1) be invariant under a symmetry of the form (Mellin 
et al., 1994) 

0 0 
G = a(x) ~x + [b(x)w + c(x)] 0---w (5.2) 

Separation by powers of w' and w results in the following system of ordinary 
differential equations: 

2b' = a" (5.3a) 

6 ( b -  2a')x -Sn= - 3 0 a n x  -5n-1 + 12bx -5" (5.3b) 

b" = 12cx -5~ (5.3c) 

c" = 0 (5.3d) 

Equations (5.3d) and (5.3c) give c and hence b as 

c = Co + Clx  (5.4) 

12Cox -5"+2 12CIx -5n+3 
b = Bo + B~x + + (5.5) 

( - 5 n  + 1) ( -5n  + 2) ( - 5 n  + 2 ) ( - 5 n  + 3) 

In general, we can write a, given by (5.3b) as 

a = Alx  5'a2 Box B~x 2 6Cox -5'~§ 
- 5 n  + 2 -5 n  + 4 ( - 5 n  + 1)(-5n + 2)(-15n/2 + 3) 

6CIx -5n+4 
(5.6) 

- ( - 5  + 2)(-5n + 3)(-15n/2 + ,4) 
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The final step in determining the form of (5.2) is to satisfy the consistency 
condition given by (5.3a), which we can now write as 

24Cox-Sn+t 24Clx-Sn+2 
2B1 + + 

( - 5 n  + 1) ( - 5 n  + 2) 

2 - 5 n l 2  + 2 

6 ( - 5 n  + 3)Cox -Sn+l 6 ( - 5 n  + 4)C~x -5~§ 
(5.7) 

- ( - 5 n  + 1)( -15n/2  + 3) - ( - 5 n  + 2 ) ( -15n /2  + 4) 

Note that Bo does not appear in (5.7), implying that we always have at least 
one symmetry which has the form 

0 0 
Gl = x ~xx + (5n - 2)w z--  (5.8) 

O w  

In addition, we have a possible second symmetry by equating coefficients 
of the powers of x in (5.7) to zero. Thereafter, setting each of the constants 
Bt, Co, Ct except one (which is set equal to one) in turn to zero, we obtain 
appropriate values for n, i.e., for Bl, n = 1; Co, n = 3/7; and for Cl, n = 
4/7. Further for At we have n = 0, 2/5. However, n = 2/5 makes the 
coefficient of C~ infinite and is therefore invalid. These values of n imply 
that the equations 

w " - 6 w  2 = 0 ,  n = 0  

3 
W "  - -  6 X - 1 5 / 7 W  2 = 0 n = - 

7 

4 
W n - -  6 X - 2 0 / 7 W  2 = 0 n = - 

7 

w " - 6 x - S w  z = O n -- 1 

(5.9a) 

(5.9b) 

(5.9c) 

(5.9d) 

have the corresponding pairs of symmetries 

0 0 0 
Gl = - x - - + 2 w  G z = - -  

Ox -~w' Ox 
(5.10) 

0 
Xl = 7x O + W~w w, 

Y l = 7 x  0 + 6 w O  
Ox 

0 0 
Xz = 343x6/7 ~x + (147x-l/Tw + 2)~w (5.11) 

Y2 = 343x8/7 + (196xl/7w - 2)~ww (5.12) 
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0 0 0 0 z, =x~+ 3w~, z2 =x~ + xw~ (5.13) 
The constant coefficients of the nonlinear terms in (5.9) can be transformed 
away. This reduces (5.9) to the system (4.4) and the discussion of following 
(4.4) applies equally in this case. Thus we have reduced the problem of 
solving the two field equations of Dyer et al. (1987) to that of solving the 
single equation 

y" + x~y 2 = 0 (5.14) 

Mellin et al. showed that the equation 

y" + p(x)y' + r(x)y = f(x)y n (5.15) 

can be transformed to the autonomous form 

Y" + 2COY' + (m + C2)y + N = KY 2 (5.16) 

where Co is given by our Bo in (5.5), 

l aa" 1 ' 2 -  l (p 1 2 ) M =  ~ - -~a  ~ ' + ~p - 2r a 2 

- 2 K f a d - - ~ e x p [ ~ f ( p - 2 C ~  (5.17, 

and 

N= x{f a--~d,~ exP[�89 f (p-~)]}2 f {[2aa,,, 

 r)aa 
2 \ ' 1  (p + l p 2 _ 2 r ) a 2 ] [ f  d ~ ~ (5.18) 

where a is given in (5.2), K is a constant of integration, and d is our c in 
(5.2), provided f(x) is given by 

f(x)=Ka-"2exp[~f(p-2?)] (5.19) 

Note that (5.17) and (5.18) imply N = 0. Thus (5.16) is more correctly 
written as 

Y" + 2COY' + (M + C~)Y = KY 2 (5.20) 
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The transformation that takes (5.15) to (5.20) is 

X = ~ dx (5.21a) 
3 a 

Y = y e x p ( - f c ) - f [ d e x p ( - ; c ) ]  (5.21b) 

where c is our b in (5.2) and is given by 

c = Co + �89 - ap) (5.22) 

Mellin et al. (1994) showed that (5.16) had two symmetries iff (now taking 
N = 0 into account) 

M + ~ - ~  M + 25 J = 0  (5.23) 

Our analysis is much simpler, as we do not have the functions p(x) and r(x), 
a is a quadratic in x, and f(x) is explicitly given by 

f(x) = x -5" (5.24) 

The condition (5.23) restricts n in (5.24), via (5.17), to 0, 3/7, 4/7, and 1/5. 
We note that (5.20) is also integrable when Co = 0. This gives n = 1/2 and 
(5.1) becomes 

W" -- 6X-512W 2 = 0 (5.25) 

Equations (5.9) and (5.25) are exactly those for which Wyman (1976) found 
solutions, as given by Havas (1992). 

Noting the parallels between the two field equations, one is tempted to 
find an analogy for Co = 0 in the case of the first equation. However, this 
is not possible, as the coefficient of z' in (4.1) is fixed. 

It is interesting to analyze our version of (5.20), viz. 

Y" + 5(2n - 1)Y' + (5n - 2)(5n - 3)Y = 6Y 2 (5.26) 

using the Painlev6 method to determine if further solutions can be found. 
The pole is at - 2  and the resonances occur at r = - 1, 6. Upon substituting 
the Laurent expansion 

6 

Y = ~ a i x  i (5.27) 
i = - 2  

where 

X = X - X o  
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into (5.26), we find that it has the Painlev6 property only if n = 0, 1/5, 
3/7, 1/2, or 4/7. This is equivalent to (5.23) or Co = 0 for (5.20). While not 
providing new solutions, this is further evidence of the close relationship 
between the Lie and Painlev6 analyses of differential equations. 

6. CONCLUSION 

Recently Mellin et aL (1994) treated cases of the generalized Emden- 
Fowler equation that have two symmetries. For n = 2 the condition they 
require for the equation to have two symmetries is exactly that our K in (3.3) 
must equal 18/625, a value we obtained by requiring that (3.3) possess the 
Painlev6 property. This is another example of the close link between the 
Painlev6 and Lie analyses of ordinary differential equations. It further demon- 
strates the usefulness of the Painlev6 property in determining the integrability 
of differential equations. This strongly suggests that the interrelationship 
between the Painlev6 and Lie analyses should be thoroughly investigated. 
This project is currently under investigation. 

The fact that the original equation (3.1) possessed the pseudo-partial 
Painlev6 property suggests that this phenomenon could be used to find solu- 
tions to equations that do not have the Painlev6 property. The Einstein field 
equations are extremely nonlinear and it is difficult to find exact solutions 
even in the special case of spherical symmetry. The pseudo-partial Painlev6 
property provides a systematic approach in the search for new solutions of 
physical interest. This approach should be applied to other useful differential 
equations arising in cosmology and relativistic astrophysics in spacetimes 
not necessarily containing spherical symmetry. 

We emphasize that the possession of the pseudo-partial Painlev6 property 
merely suggests that the equation is integrable on a subspace of the space 
of initial conditions (Cotsakis and Leach, 1994). We cannot predict the 
behavior of the solution off the subspace. In fact, it has recently been shown 
that a third-order system that possesses the partial Painlev6 property on a 
known subspace is chaotic in the sense of Lyapunov for sets of initial condi- 
tions off that surface (Richard and Leach, 1994). This is supported by the 
fact that we are only able to find solutions to the first field equation for a 
particular value of its first integral, i.e., this value determines the subspace 
on which the equation is integrable. This is in agreement with the ARS 
conjecture (Ablowitz et aL, 1981), which holds only for this value of the 
first integral. Thus we expect solutions of the first field equation to be found, 
at best, for particular values of the first integral and all m or vice versa. This 
explains Havas' results (Havas, 1992), which are only valid for particular 
values of the first integral, and Wyman's results (Wyman, 1976), which only 
hold for particular values of m. 
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We finally note that the search for further solutions of the Dyer- 
McVittie-Oattes field equations (Dyer et al., 1987) should be confined to 
finding the different values of n for which 

y" + x"y 2 = 0 

is integrable. 
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